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1. Introduction 

Treynor (1962), Sharpe (1964), Lintner (1965) and Mossin (1966) developed the Capital Asset 

Pricing Model (CAPM), which predicts that a single market factor drives co-movement in asset 

returns. In later work, Merton’s (1972) Intertemporal CAPM and Ross’s (1976) Arbitrage 

Pricing Theory (APT) suggested that investors may consider multiple risk sources when making 

their investment decisions, providing the foundations for multifactor asset-pricing models. Since 

the advent of these two theories, many variables have been proposed as proxies for the true 

common risk factors that drive co-movement in asset returns. We refer to these variables as 

empirical factors. Some well-known examples are the three factors of Fama and French (1993) 

and the five macroeconomic factors of Chen, Roll and Ross (1986).
1
  

 Multifactor models typically predict that return on a risky asset is determined by the 

amount of undiversifiable risk from holding the asset (betas) and the necessary rewards 

(premiums) to induce investors to bear the risks. Under an asset-pricing model with K empirical 

factors, the K betas of an asset are simply the coefficients in a regression model, in which the 

dependent variable is the asset’s (excess) return and the independent variables are the K factors. 

The N×K matrix of betas is the matrix of K betas from each of the N different asset returns. In 

order to examine the empirical relevance of an asset-pricing model, researchers need to estimate 

the beta matrix and the risk premiums related to each of the K factors. However, they can obtain 

consistent (asymptotically unbiased) risk premium estimators only if the N×K true (but 

unobservable) beta matrix has full column rank; that is, all of the columns in the true beta matrix 

should be linearly independent. It is not sufficient that the estimated beta matrix has full column 

rank. Thus, it is important to estimate the rank of the true beta matrix.
2
  

 The rank of a beta matrix is important not only for identifying the factors’ risk premiums, 

but also for providing inferences on the number of latent common factors in asset returns. As we 

show, the rank of the beta matrix corresponding to a set of empirical factors equals the number of 

true latent factors that are correlated with the empirical factors. Thus, the beta matrix with a rank 

of two or more indicates the presence of multiple latent factors, given that the beta matrix must 

                                                           
1
 Harvey, Liu, and Zhu (2013) categorize 314 empirical factors from 311 different papers published in top-tier 

finance journals and current working papers since 1967. 

 
2 The literature has reported some special cases in which beta matrices fail to have full column rank. Kan and Zhang 

(1999a, 1999b) consider a case in which all betas corresponding to an empirical factor equal zero. Ahn, Perez and 

Gadarowski (APG, 2013) find that the estimated market betas have very small limited cross-sectional variations and 

that some betas of the three factors of Fama and French (1993) are highly multicollinear. 
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have a rank equal to one if the empirical factors are correlated with only one latent true factor. In 

addition, if some empirical factors are not correlated with latent true factors at all, the beta matrix 

cannot have full column rank. The rank of the beta matrix remains the same when such empirical 

factors are removed from the estimation.
3
   

 Many methods are available to estimate the rank of a matrix,
4
 such as those in Anderson 

(1951), Cragg and Donald (1997), Robin and Smith (2000), and Kleibergen and Paap (2006). 

These methods are useful for cases in which both N  (the number of assets analyzed) and K  (the 

number of common factors) are sufficiently small compared to the sample size (T, the number of 

time series observations on each return and common factor). For example, Burnside (2010) uses 

a test proposed by Cragg and Donald (1997) to check whether the beta matrices from several 

multifactor models have full column rank. Conducting Monte Carlo simulations, he found that 

the test method has good power to detect rank deficiency of a beta matrix for data with N = 25 

and T = 240. Applying the method to actual data, he also found that beta matrices from some 

models failed to have full column rank. 

 The principal focus of this paper is the identification of methods that accurately estimate 

the rank of a beta matrix even if N is large. A recent study by Lewellen, Nagel and Shanken 

(2010) suggests that the relevance of an asset-pricing model can be better tested by analyzing a 

large number of asset returns. This finding raises the following two questions: (i) Are the 

available rank estimators accurate even if data with large N are used (e.g., 25N  )?  (ii) Is the 

rank of a beta matrix more accurately estimated when data with larger N are used? This paper 

addresses each of these questions.  

Our estimator of interest is Cragg and Donald’s (1997) Bayesian Information Criterion 

(BIC) estimator, computed under the assumption that return data are independently and 

identically distributed (i.i.d.) conditionally on empirical factors. We refer to this estimator as the 

restrictive BIC (RBIC) estimator. The main findings from our asymptotic analysis and 

simulations are the following. First, the RBIC estimator is consistent (asymptotically unbiased) 

even if data are, in fact, conditionally heteroskedastic and/or autocorrelated. Second, the RBIC 

                                                           
3
 However, the rank of a beta matrix corresponding to a set of empirical factors is not necessarily equal to the total 

number of true latent factors. For example, if a beta matrix corresponding to five empirical factors is found to have a 

rank of two, then only two latent factors are correlated with the five empirical factors. The total number of true 

latent factors can be greater than two if some latent factors are not correlated with the empirical factors used in the 

regressions. 

 

4
 Al-Sadoon (2015) provides an excellent survey of the available rank estimation methods. 



3 

 

estimator performs well in the data comparable to monthly data of 20 or more years ( 240T  ), 

and the number of assets analyzed (N) is not greater than half of the number of time series 

observations ( / 2N T ). However, for the data with N close to T, the estimator is not reliable at 

all. Third, for data with / 2N T , the finite-sample performance of the RBIC estimator 

dominates that of other estimators by a large margin.  

Empirically, many multifactor models have been proposed in the literature. Most of these 

models explain the cross-section of returns better than the CAPM does. However, with the 

richness of empirical factors, we need to address some important questions. Our paper aims to 

answer three of these questions: (i) Are these empirical factors capturing different common risk 

factors? (ii) How many common risk factors are correlated with the proposed empirical factors? 

(iii) Which empirical factors are truly important? To answer these questions, we apply the RBIC 

estimation method to the monthly and quarterly returns of U.S. stock portfolios and individual 

stocks over the period from 1972 to 2011. We consider 26 empirical factors proposed by 

previous studies. We analyze both monthly and quarterly returns using the five factors of Chen, 

Roll, and Ross (1986, CRR); the three factors of Fama and French (1993, FF); the three factor-

model of Jagannathan and Wang (1996, JW); the four factors of Carhart (1997); the five factors 

of Fama and French (2015, FF5); the four factors of Hou, Xue and Zhang (2015, HXZ); and the 

short-term and long-term reversal factors. For quarterly returns, we also consider the 

macroeconomic factors used by six additional asset-pricing models: the consumption CAPM and 

the models of Lettau and Ludvigson (2001); Lustig and Van Nieuwerburgh (2004); Li, Vassalou 

and Xing (2006); Yogo (2006); and Santos and Veronesi (2006). 

The key results from our actual data analysis are summarized as follows. First, for both 

portfolio and individual stock returns, many models fail to produce full rank beta matrices. This 

result is consistent with the findings of Burnside (2010) and Kleibergen and Paap (2006).  

Second, when all of the 26 empirical factors are regressed together on portfolio returns, the rank 

of the beta matrix is, at most, six. This result suggests that the empirical factors are correlated 

with, at most, six different latent risk factors. Third, the estimated ranks of the beta matrix using 

individual stock returns as response variables are smaller than the ranks obtained using portfolio 

returns. Overall, many of the proposed empirical factors appear to be correlated with the same 

latent risk factors, and thus, many empirical asset-pricing models’ risk premiums are under-

identified.  

The rest of this paper is organized as follows. Section 2 introduces the factor model that 

we investigate and the BIC estimators. We also examine the asymptotic and finite-sample 
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properties of the RBIC estimator. Section 3 reports our Monte Carlo simulation results, and 

Section 4 discusses the results from actual data analysis. Some concluding remarks follow in 

Section 5. All of the proofs of our theoretical results are given in the appendix. 

 

2. Rank Estimation 

We begin with the approximate factor model that Chamberlain and Rothschild (1983) consider. 

Let 
itx  be the response variable for the 

thi cross-section unit at time t , where i = 1, 2, ... , N, and t 

= 1, 2, ... , T. Explicitly, 
itx  can be the (excess) return on asset i  at time t . The response 

variables itx  depend on the J latent factors 1( ,..., )t t Jtg g g  . That is,  

 t g t tx g u   , (1) 

where 1( ,..., )t t Ntx x x  ;   is the N-vector of individual intercepts; g  is the N J  matrix of 

factor loadings; and tu  is the N-vector of idiosyncratic components of individual returns with 

( ) 0t t J NE g u 
  . The matrix g  is assumed to have full column rank ( ( )grank J  ) because, 

otherwise, the model (1) can reduce to a model with ( 1)J  or fewer factors. Both tg  and tu  are 

unobservable. 

 Observables are K empirical factors, 1( ,..., )t t Ktf f f  , which are correlated with r  (≤ J) 

latent factors in tg  but not with the idiosyncratic errors in tu . This assumption implies that  

 t t tg f v   , (2) 

where   is the J-vector of intercepts and   is a J K  matrix of coefficients with ( )rank  = r, 

( ) 0t t K NE f u 
  , ( ) 0t t K JE f v 

  , and ( ) 0t t J NE v u 
  . The error vector tv  is the vector of the 

components of tg  which is not correlated with tf . If we substitute (2) into (1), we obtain 

 ( ) ( )t g g t g t t t tx f v u f             , (3) 

where we denote the i
th

 row of   and   by i  and 1 2( , ,..., )i i i iK     , respectively. The focus 

of this paper is to estimate the rank of the beta matrix  , which we denote by r . 

 Some remarks follow on the linear factor model (3). First, the rank of g     is 

determined by that of   because g  is a full column rank matrix. That is, ( )rank r  , which 

is the number of latent factors or their linear combinations that are correlated with the empirical 

factors tf . Thus, the rank of the beta matrix   equals the maximum number of true latent factors 
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that can be explained by the empirical factors tf , and the rank can be smaller than the total 

number of true factors, J. Second, even if individual returns are generated by an exact factor 

model (in which the idiosyncratic errors in tu  in (1) are mutually independent), the errors in t  

in (3) could be cross-sectionally correlated through g tv  unless the variables in tf  are perfectly 

correlated with tg  (so that 10t Jv  ). Accordingly, the rank of the beta matrix   needs to be 

estimated allowing for possible cross-sectional correlations in t . Third, if r J , the beta 

matrix can perfectly explain expected individual returns. For example, if r = J = K -- that is, if 

the number of empirical factors tf  equals the number of true latent factors tg  (K = J) and if the 

former variables are correlated with all of the latter variables ( r J ) -- the beta matrix   has 

the full column rank and can explain expected individual returns perfectly. Specifically, there 

exists a unique K-vector   satisfying the pricing restriction, ( )tE x   ,
5
 where tx  contains 

excess returns (see Lewellen, Nagel and Shanken, 2010). However, if r J K   -- that is, if too 

many empirical factors are used compared to the number of true latent factors -- the beta matrix 

does not have full column rank. As a consequence, there are an infinite number of K-vectors   

satisfying the pricing restriction. The beta matrix   may still perfectly explain the expected 

excess returns ( )tE x , but the risk prices (  ) are not unique. For this case, Burnside (2010) 

shows that the two-pass estimator of   is not asymptotically normal. This problem arises even if 

all of the empirical factors tf  are correlated with (linear combinations of) the true latent factors 

tg . To explain assets’ returns, the use of too many empirical factors is not harmful as long as 

each of them is correlated with true latent factors. However, the resulting two-pass estimates of 

factor prices would not provide reliable statistical inferences if the number of empirical factors 

used is greater than the number of true latent factors captured by them. 

 In order to discuss how to estimate the rank of the beta matrix   in (3), let us introduce 

some notation. Let 

  
1 1

1 1
ˆ ˆ( )( ) ; ( )( )T T

xf t t t ff t t tT x x f f T f f f f 

 
           , 

                                                           
5
 If tx  contains raw returns, ( ) [1 , ]t NE x   , where1N  is an N-vector of ones. 
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where 
1

1

T

t tf T f

   and 
1

1

T

t tx T x

  . Then, the Ordinary Least Squares (OLS) estimator of   

is given by 
1

1 2
ˆ ˆ ˆˆ ˆ ˆ[ , ,..., ]N xf ff        . Under suitable conditions detailed in the appendix and 

the assumption of fixed N, we can show that as T  , 

   ˆ( ) 0,dTvec N     , (4) 

where ( )vec   is a matrix operator stacking all the columns in a matrix into a column vector,   

is a finite positive definite matrix; and “ d ” means “converges in distribution.” Let ̂  be a 

consistent estimator of   as T → ∞, and let us use pA  and pM  to denote K×p and N×p 

( 0 p K  ) matrices of full column rank. Finally, let ˆ
pA  and ˆ

pM  be the minimizers of the 

objective function 

  
1ˆ ˆˆ ˆ( , , ) ( ) ( )T p p p p p pA M Tvec A M vec A M        . (5) 

 Cragg and Donald (1997) show the following: 

  ˆ ˆˆ( , , )T p p pA M    , for p r  (6) 

  ˆ ˆˆ( , , )T r rA M 
2

( )( )p N r K r   , for p r , (7) 

 where r  is the true rank of  , and “ p ” means “converges in probability.” Based on these 

findings, they develop two different rank estimation methods. One estimator, which they refer to 

as the Testing Criterion (TC) method, is obtained by repeatedly testing the null hypotheses of 

r p  (p = 0, 1, 2, ...., K – 1, where K is the number of empirical factors used) against the 

alternative hypothesis of full column rank. Each hypothesis is tested by using ˆ ˆˆ( , , )T p pA M   as 

a 
2

( )( )N p K p    statistic. The TC estimate is the minimum value of p that does not reject the 

hypothesis of r p . If all of the null hypotheses are rejected, the TC estimate equals K. 

 The other estimator, which Cragg and Donald (1997) refer to as the Bayesian Information 

Criterion (BIC) estimator, is obtained by finding the value of p, which minimizes the criterion 

function 

 ˆ ˆˆ( ) ( , , ) ln( ) ( )( )T p pC p A M T N p K p       , (8) 

where p = 0, 1, ... , K. For (8), ln( )T  can be replaced by any w(T) function such that w(T) → ∞

and w(T)/T → 0 as T → ∞. Clearly, ln(T) is a possible function to use. The BIC estimator 

computed with any w(T) is a consistent estimator.  
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 While both the TC and BIC estimators have desirable large-sample properties, they are 

computationally burdensome to use in practice, especially for the cases with large N. This is so 

because the matrices pA  and pM  contain a large number of unknown parameters to be estimated, 

especially for the cases with large N and p. In unreported experiments, we attempt to compute 

the TC and BIC estimators using the same simulated data that we use for the results reported in 

Section 3. We observe that standard minimization algorithms failed to find ˆ
pA  and ˆ

pM  too often. 

 This computational problem can be resolved if we impose some restrictions on the 

covariance structure of the error terms. For example, suppose that the idiosyncratic error vectors 

t  are independently and identically distributed (i.i.d.) conditionally on the empirical factors tf  

with the conditional variance-covariance matrix, ( | )t tVar f    . The individual errors it  are 

still allowed to be cross-sectionally correlated; that is, the off-diagonal elements of   need not 

be zero. For this case, the computation procedures for the TC and BIC estimators are 

considerably simplified. When the error vectors are i.i.d. over time, 
1ˆ ˆ ˆ

R ff

     is a 

consistent estimator of  , where “ ” means the Kronecker product and ˆ
  is a consistent 

estimator of  ; i.e., 

  1

1ˆ ˆ ˆ[( ) ( )][( ) ( )]T

t t t t tx x f f x x f f
T K

 
        


. 

Cragg and Donald (1997) show that when ˆ
R  is used for ̂ ,  

  1
ˆ ˆ ˆ ˆˆ ˆ ˆ( , , ) 0; ( , , ) K p

T K K R T p p R j jA M A M T 

       , (9) 

where p = 0, 1, … , K – 1,  1ˆ ˆ ˆ ˆˆ
j j ff       , and ( )j  denotes the j

th
 smallest eigenvalue of 

the matrix in the parenthesis. We refer to the TC estimator using (9) as the “restricted” TC (RTC) 

estimator.   

 Many previous studies have considered the statistic ˆ ˆˆ( , , )T p p RA M  . For example, if we 

replace ˆ
j  by ˆln(1 )j , ˆ ˆˆ( , , )T p p RA M   becomes Anderson’s (1951) Likelihood Ratio (LR) 

rank test statistic. When p r  and the error vector t  is i.i.d. over time, ˆ ˆˆ( , , )T p p RA M   and 

the LR statistic are asymptotically identical. Robin and Smith (2000) show that ˆ ˆˆ( , , )T p p RA M   

and the LR statistics with p r  are asymptotically a weighted sum of independent 
2

1  random 
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variables, when the error vector is conditionally heteroskedastic and/or autocorrelated. A 

difficulty in using ˆ ˆˆ( , , )T p p RA M   for the TC estimation is that its asymptotic distribution 

should be simulated using some parameter estimates. As a treatment of this problem, Kleibergen 

and Paap (2006) propose an alternative statistic that is asymptotically chi-squared even if the 

error vector is conditionally heteroskedastic and/or autocorrelated. Their statistic is also 

asymptotically identical to ˆ ˆˆ( , , )T p p RA M   when p r  and the error vector t  is i.i.d. over 

time. 

 The BIC estimator computed with ˆ
R  for ̂  is another way to consistently estimate the 

rank of the beta matrix, even if the error vector is conditionally heteroskedastic and/or 

autocorrelated. We refer to this BIC estimator as the restricted BIC (RBIC) estimator, which is 

the minimizer of the criterion function (8) with (9): 

 
1

ˆ( ) ln( ) ( )( )K p

R j jC p T T N p K p

      .  

An intuition for the consistency of the RBIC estimator follows. While Cragg and Donald (1997) 

have shown the consistency of the BIC estimator (based on (8)) using results (6) and (7), the 

same consistency result is obtained with ̂  in (5) replaced by any (asymptotically) positive 

definite matrix as long as (6) holds and ˆ ˆˆ( , , )T r rA M   is (1)pO  (an asymptotically bounded 

random variable). The statistic ˆ ˆˆ( , , )T r rA M   need not be an asymptotically chi-squared 

random variable, as in (7). According to Robin and Smith’s (2000) results, ˆ ˆˆ( , , )T r r RA M   is 

(1)pO  regardless of whether the error vectors are i.i.d. over time. Thus, although the RBIC 

estimator is computed under the i.i.d. assumption, it is consistent under much more general 

conditions.
6
 

 Furthermore, we can test whether or not some betas are cross-sectionally constant by 

comparing the ranks of two matrices: the beta matrix   and its demeaned version, NQ  = 

1 2( , ,..., )N    , where NQ  = 
11 1N N NI N   , 1N  is an N-vector of ones, i i    , and 

1

1

N

i iN 

  . If a column of   (or a linear combination of the columns of  ) is proportional 

to a vector of ones, the corresponding column of the demeaned beta matrix ( NQ  ) becomes a 

zero vector. Thus, ( )Nrank Q  = 1r  . For the same reason, if two columns of   are proportional 

                                                           
6
 The proof of the consistency under more general conditions is in the Appendix. 
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to a vector of ones, ( ) 2Nrank Q r   . If no column of   has constant betas, the two matrices 

  and NQ   must have the same ranks. Therefore, comparing the estimated ranks of the beta 

matrix ( ) and the demeaned beta matrix ( NQ  ), we can determine whether a constant-beta 

factor exists in tf . 

 The RBIC estimator can be easily modified to estimate the rank of the demeaned beta 

matrix. Define the following criterion function: 

   1
ˆ ˆ ˆ ˆ( ) ( ) ln( ) ( 1 )( )K p

R j j ff N N N ND p T Q Q Q Q T N p K p 


          

,
 (10) 

where p = 1, ... , K–1, and ( ) 0RD K  . Then, the RBIC estimator of the demeaned beta matrix 

( NQ  ) equals the minimizer of ( )RD p . We refer to this estimator as the RBICD estimator. Note 

that even for the cases in which ˆ
  has full column rank, ˆ

N NQ Q  may not. That is why we use 

the Moore-Penrose generalized inverse of ˆ
N NQ Q  in ( )RD p .  

 Because the RBIC (RBICD) estimator is consistent as T   with fixed N, we can 

expect the estimator to have good finite-sample properties for the data with large T and relatively 

small N. However, it is unknown whether the estimator would remain consistent as both N  and 

T grow infinitely. One immediate problem with using the RBIC (RBICD) estimator for the data 

with large N is that ˆ
  is not invertible if N T . This numerical problem can be resolved if we 

use the Moore-Penrose generalized inverse matrix of ˆ
  ( ˆ



 ) instead of 1ˆ


 . However, it is 

still difficult to determine whether the RBIC (RBICD) estimator computed with ˆ


  would be 

consistent with the data with both large N and T. We investigate this question using Monte Carlo 

simulations in the next section. 

 

3.  Finite-Sample Properties of RTC and RBIC Estimators 

3.1. Simulation Setup 

The foundation of our simulation exercises is the following data-generating process: 

 1

K

it i j ij jt itx f     ;
21 1 2 2

2 2

1 2

( )
1i t i t

it it

i i

h h
v

 
  

 


  


, 

where the empirical factors jtf  and the 1i , 2i , 1th , 2th , and itv  in it  are all randomly drawn 

from (0,1)N . For simplicity, we set 0i   for all i. Under this setup, the variance of error it  
is 
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equal to one for all i and t. The factor components 1th  and 2th  can be viewed as common latent 

factors that are not correlated with the empirical factors jtf . The errors it  are cross-sectionally 

correlated through 1th  and 2th  if 0  . We have also considered the cases in which the errors are 

serially correlated. We do not report the results because they are not materially different from the 

results reported below. For the reported simulations, we set   = 0.2. The use of greater values 

for   does not change the estimation results substantially. 

 We generate the beta matrix   by the following three steps. First, we draw an N r  

random matrix g  such that its first column equals the vector of ones, and the entries in the 

other columns are drawn from (0,1)N . Second, we draw a random K K  positive definite 

matrix, compute the first r  orthonormalized eigenvectors of the matrix, and set a K r  matrix 

C  using the eigenvectors.
7
 Finally, we set 1/2

g C    , where 1( ,..., )rdiag    . This setup 

is equivalent to the case in which individual returns are generated by r true factors 

1/2

1( ,..., )t t rt tg g g C f     with ( )tVar g   . The factor loading matrix corresponding to tg  is 

g . By construction, the factors in tg  are mutually independent, and the betas corresponding to 

1tg  are constant over different individual response variables. Under this setup, ( )rank r   and 

( ) 1Nrank Q r   . We use this setup to investigate the finite-sample performances of the RBIC 

and RBICD estimators. We also consider the RTC estimator because it is consistent under our 

data-generating process. Robin and Smith (2000) and Kleibergen and Paap (2006) suggest 

alterative TC estimators. We do not consider the performances of these alternative TC estimators 

because they are numerically the same as the RTC estimator if they are computed with ˆ
R  for 

̂ .   

 Under our data-generating setup, each of the empirical factors tf  can have non-zero 

explanatory power for individual response variables itx , even if the beta matrix   does not have 

full column rank. The parameter j  equals the variance of the j
th

 true factor, jtg . Given that g  

is drawn from (0,1)N , the j  equals the signal-to-noise ratio (SNR) of jtg  (e.g., the ratio of the 

return variations caused by the true factor jtg  and by idiosyncratic errors it ). The population 

                                                           
7
 The random matrix is of the form M M , where the entries of the K K  matrix M are drawn from N(0,1). 
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average R-square (average explanatory power of the empirical factors tf  for individual response 

variables itx ) equals 1 1( ) / (1 )r r

j j j j    . 

We try four different values of T: T = 60, 120, 240, and 480. For each T, we generate six 

different sets of response variables N: N = 25, 50, 75, 100, 200 and 400. For each combination of 

N and T, we also consider two cases: one with five empirical factors (K = 5) and the other with 

fifteen factors (K = 15). For both cases, we use two different beta ranks, 1r   and 4, and three 

different values,    0.03, 0.1 and 0.5, for the SNR of a true factor. When 4r  , we use the 

same value of   for all four factors: j   for 1, 2, 3j   and 4. For each combination of N, T, 

K, r and  , we generate 1,000 samples.  

Our simulation setup may not represent the true data-generating processes of asset returns. 

However, we choose parameter values such that the simulated data have properties similar to 

those of actual data. First, empirical studies of asset-pricing models routinely use monthly data 

over five, ten, twenty, or forty years. The values of T are chosen to be consistent with this 

practice. Second, the empirical factors proposed in the literature sometimes have low explanatory 

power for stock returns. To investigate the cases in which empirical factors have limited 

explanatory power for response variables, we generate data with latent factors with very low 

SNRs, 0 03.  . Third, the idiosyncratic error components of actual returns are likely to be 

cross-sectionally correlated. Under our simulation setup, the error terms are cross-sectionally 

correlated through the unobserved factor components 1th  and 2th . We could have generated 

cross-sectionally correlated errors using the estimated variance-covariance matrix of the errors 

from actual data; however, for the actual data with N  close to or greater than T, we could not 

consistently estimate the variance matrix of the error vector 1 2( , ,..., )t t t Nt     . For example, 

the estimated variance matrix is not invertible if N > T, although the true variance matrix would 

be invertible. Thus, the errors generated based on an estimated variance matrix from actual data 

are likely to have a different cross-sectional covariance structure from that of the idiosyncratic 

error components of actual returns.  

Finally, the empirical factors proposed in the literature ( tf  in our notation) are unlikely to 

be perfectly correlated with true latent factors ( tg  in our notation). When this is the case, the 

finite-sample performances of the rank estimators can depend on the degrees of correlation 

between tf  
and tg . Our simulations can provide useful information for such general cases. 
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When empirical factors are imperfect proxy variables, the errors it  should be cross-sectionally 

correlated. In addition, for the cases of imperfect correlation, the SNR of a latent factor (
j ) in 

our simulations can be interpreted as the SNR of a linear combination of empirical factors that is 

maximally correlated with the factor. For example, if a latent factor has an SNR of 0.03, it can be 

interpreted as the linear combination of the empirical factors maximally correlated with the latent 

factor having an SNR of 0.03 and explaining approximately 3% (=0.03/1.03) of the total 

variation in response variables.  

 

3.2. Simulation Results  

Given that the RTC and RBIC estimators are designed for data with relatively large T and small 

N, our simulation aims to address the data size that is required to obtain reliable inferences from 

the estimators.  

 We begin by considering the finite-sample performance of the RTC estimator. Table 1 

reports the RTC estimation results from our simulations with five and fifteen empirical factors (K 

= 5 and K = 15). We consider two cases: 1r   when K = 5, and 4r  when K = 15. Data are 

generated such that the true latent factors (or linear combinations of the five empirical factors) 

have SNRs of 0.03, 0.1, and 0.5. Using the combination of low and high values of SNRs, our 

simulation results provide better guidance for the analysis of actual return data. Table 1 reports 

the percentages (%) of correct estimation by the RTC estimator. The percentages of 

underestimation and overestimation are reported below in parentheses. 

 Table 1 shows that the RTC estimator performs rather poorly in most of the N and T 

combinations. For the cases with N = 25, the accuracy of the RTC estimator is not greater than 

50% when T is less than or equal to 120. The estimator’s performance deteriorates as T decreases 

or N decreases. For example, for the cases with N = 25 and T = 480, the accuracy of the RTC 

estimator is between 87% and 90.1%. However, the accuracy of the estimator is not better than 

28% for the cases with 50N   and 240T  , and not better than 9% for the cases with 100N   

and 480T  . As N increases to about / 2T , the accuracy of the RTC estimator drops to near 

zero. Similar patterns are observed in the simulations with any combination of K and r, whether 

latent factors are weak ( 0.03  ) or strong ( 0.5  ). Furthermore, in all of the cases 

considered in Table 1, the performance of the RBIC estimator dominates that of the RTC 

estimator, as Tables 2 and 3 show. 
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Table 2 reports the performance of the RBIC estimator for the cases with five empirical 

factors (K = 5). The data-generating process is the same as the one described in the beginning of 

this section. The accuracy of the RBIC estimator appears to have a non-monotonic relationship 

with the number of response variables (N). For the cases with 1r  , the accuracy of the estimator 

increases with N when / 2N T  and decreases with N when / 2T N T  . The estimator 

overestimates the rank of the beta matrix when / 2T N T  . When N T , the accuracy of the 

estimator increases with N up to some points (e.g., ( , )T N  = (60, 100) and (120, 200)). However, 

as N increases further, the estimator begins to underestimate the beta rank, and its accuracy drops 

sharply. In order to investigate this irregular behavior of the RBIC estimator further, we 

conducted some additional experiments using data with / 2N T . To save space, we summarize 

the results here. For a given T, the degree of overestimation by the RBIC estimator increases as 

N increases from / 2N T  to N T . However, the accuracy of the estimator improves as N 

increases from N T  to 2N T  (or near 2T). Then, as N increases further from 2N T  (or 

near 2T), the estimator starts to underestimate the beta rank. In general, the RBIC estimator tends 

to overestimate the beta rank if / 2 2T N T  , while it severely underestimates the rank when 

2N T . The tendency to overestimate reverses to a tendency to underestimate at some point in 

2T N T  . Thus, the RBIC estimator occasionally performs well at some points when 

2T N T  .  

We find a similar pattern for the cases with 4r  . The accuracy of the RBIC estimator 

increases with N up to some points where / 2 2 / 3T N T  . However, the accuracy drops 

quickly with N after the points. The results reported in Table 2 suggest that the RBIC estimator 

should be used with caution for data with / 2N T . In particular, the estimator appears to be 

inappropriate for data with 2 / 3N T .
8
  

Furthermore, for the cases with 240T  and / 2N T , the accuracy of the RBIC 

estimator is near 100% except for the cases with 0.03  . Not surprisingly, the RBIC estimator 

tends to underestimate the rank of the beta matrix in the presence of factors with very low 

SNRs.
9
 However, the accuracy of the RBIC estimator improves with N as long as / 2N T . For 

                                                           
8 From some unreported simulations, we find that when T ≥ 960, the RBIC estimator is accurate as long as N ≤ 

0.8×T. It appears that range of the ratio /N T  in which the RBIC estimator remains reliable increases with T. 

However, for the data with T ≤ 480, the condition / 2N T  seems to be important to secure the reliability of the 

RBIC estimator.  

      
9
 For the cases with r = 4, we use the same value for all of the 4 SNRs (λ1 = ... = λ4). In unreported experiments, we 

also try different SNR values. Not surprisingly, the accuracy of the RBIC estimator depends on the smaller SNR 
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example, as shown in panel (b) of Table 2, for the cases with 240T   and 0.03  , the RBIC 

estimator’s accuracy improves from 33.3% to 100% as N increases from 25 to 100. We observe a 

similar pattern in the cases with 480T   and 0.03  .            

The accuracy of the RBIC estimator may depend on the number of empirical factors (K). 

Table 3 reports the estimation results from the cases with K = 15. Compared to the results in 

Table 2, the accuracy of the RBIC estimator generally falls as more empirical factors are used, 

while the explanatory power of empirical factors (R-squared) remains the same. The 

performance pattern of the RBIC estimator regarding the data size is identical to that obtained in 

Table 2. Even when the explanatory power of empirical factors is very low ( 0.03j  ), the 

RBIC estimator is quite accurate if T or N (when / 2N T ) is large. For example, when 

0.03   and 4r  , the accuracy of the RBIC estimator is 99.9% when ( , ) (240,100)T N   and 

98.4% when ( , )T N  = (480,50) . 

Finally, we consider the performance of the RBICD estimator. Under our simulation 

setup, the rank of the demeaned beta matrix equals r – 1. We use the simulated data with r = 4. 

The results, reported in Table 4, are similar to those reported in Tables 2 and 3. The accuracy of 

the RBICD estimator increases with N when / 2N T  and also increases monotonically with T. 

The three main results from our simulation exercises are the following. First, the RTC 

estimator is generally inaccurate unless T is very large (e.g., T = 480) and N is sufficiently small 

compared to T (e.g., T = 480 and N ≤ 25).
10

 Second, the RBIC estimator outperforms the RTC 

estimator in most of the cases we consider. Third, the accuracy of the RBIC estimator has a non-

monotonic relationship with the number of response variables (N). The power of the estimator 

initially increases with N but falls as N increases further from some point (e.g, / 2N T ). For 

the data with N close to T, we cannot expect a reliable inference from the RBIC estimator. The 

RBICD estimator shows the same pattern. Both the RBIC and RBICD estimators produce 

reliable inferences in the simulated data whose sizes are compatible with those of the actual data 

                                                                                                                                                                                           
values. For example, when we use 0.03 for two and 0.1 for two other SNRs, the performance of the RBIC estimator 

is similar to that reported for the cases with λj = 0.03 (j = 1, ... , 4) in panel (b) of Table 2.  
    
10

 In our simulations we have not tried unrestricted TC estimators based on Cragg and Donald (1997), Robin and 

Smith (2000), or Kleibergen and Paap (2006) because they are asymptotically identical to the RTC estimator under 

our data-generating process. In addition, the unrestricted TC estimators (computed allowing conditional 

heteroskedasticity and autocorrelation) are not expected to perform better than the RTC estimator in our simulated 

data. When the idiosyncratic components of returns are heteroskedastic and/or autocorrelated, unrestricted TC 

estimators would perform better than the RTC estimator. However, the accuracy of the unrestricted TC estimators is 

unlikely to be better than the numbers reported in Table 1. 
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we analyze in the next section -- even for the cases in which some empirical factors have low 

explanatory power for returns. 

 

4. Application 

In this section, we estimate the ranks of different beta matrices using various combinations of 

empirical factors. We conduct our estimation with monthly and quarterly data from January 1972 

to December 2011 and analyze both portfolio and individual stock return data. For the analysis of 

monthly data, we consider a total of sixteen non-repetitive empirical factors from six different 

multifactor models and two reversal factors proposed in the literature: the three factors of Fama 

and French (1993, FF3); the four factors of Carhart (1997, Carhart); the five factors of Fama and 

French (2015, FF5); the four factors of Hou, Xue and Zhang (2015, HXZ); the five factors of 

Chen, Roll and Ross (1986, CRR); and the three factors of Jagannathan and Wang (1996, JW). 

The FF3 factors are the CRSP value-weighted portfolio return minus the return on the one-month 

Treasury bill (VW), Small Minus Big (SMB) and High Minus Low (HML) factors.
11

 The Carhart 

factors are the FF3 plus the momentum factor (MOM, selling losers and buying winners six to 

twelve months ago). The FF5 factors are the FF3, Robust Minus Weak (RMW) and Conservative 

Minus Aggressive (CMA) factors. The HXZ factors are the VW, SMB, Investment-to-Asset 

(I/A) and Return on Equity (ROE) factors. The CRR factors are five macroeconomic variables: 

industrial production (MP), unexpected inflation (UI), change in expected inflation (DEI), the 

term premium (UTS), and the default premium (UPR).
12

 The JW factors are the VW, LAB 

(growth rate of labor income) and UPR factors.
13

 Finally, we include the two reversal factors 

(REV) to address the different momentum effects discussed in Jegadeesh and Titman (1993) 

(REV_S: selling winners and buying losers one month ago; and REV_L: selling winners and 

buying losers thirteen to sixty months ago). 

 

 

                                                           
11

All of the FF factors are available from Kenneth French’s website (www.dartmouth.edu/~kfrench/). 

12
The CRR factors are available from Laura Xiaolei Liu’s webpage (http://www.bm.ust.hk/~fnliu/research.html). 

For detailed information on how these factors have been constructed, see Liu and Zhang (2008). The UPR factor 

(default premium) equals the yield spread between BAA- and AAA-rated bonds.   

 
13

The LAB factor is constructed using the NIPA 2.1 and NIPA 2.6 tables for quarterly and monthly data, 

respectively. The tables are available at the Bureau of Economic Analysis webpage: http://www.bea.gov/iTable. 

Specifically, the factor is the growth rate of total personal income minus personal dividend income divided by total 

population. 

  

http://www.bm.ust.hk/~fnliu/research.html
http://www.bea.gov/iTable
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4.1 Results from Portfolio Returns  

Six sets of portfolio returns are used for regressions. Five of them consist of 25 Size and 

Book-to-Market (B/M) portfolios, 30 Industrial portfolios, 25 Size and Momentum portfolios, 25 

Operating Profitability and Investment portfolios, and the 32 Size, Operating Profitability and 

Investment portfolios. In addition, following the suggestion of Lewellen, Nagel, and Shanken 

(2010), we also consider the combined set of the 25 Size and B/M and 30 Industrial portfolios.
14

 

The excess return on each portfolio is computed using the one-month Treasury bill rate as the 

risk-free rate. 

 For sensitivity analysis, we also estimate the above factor models using quarterly 

observations. Analyzing quarterly portfolio returns, we can examine five additional factor 

models that are discussed in Lewellen, Nagel, and Shanken (2010): the consumption CAPM 

(CCAPM); the two conditional CCAPMs of Lettau and Ludvigson (2001, LL); the durable-

consumption CAPM of Yogo (2006, Yogo); the conditional CAPM of Santos and Veronesi 

(2006, SV); and the investment-based CAPM of Li, Vassalou and Xing (2006, LVX).
15

 The 

empirical factors used by these models are CG (aggregate consumption growth rate) for the 

CCAPM; CG, CAY (aggregate consumption-to-wealth ratio) and CG×CAY for the LL model; 

VW, DCG (durable-consumption growth rate) and NDCG (nondurable-consumption growth 

rate) for the Yogo model; VW and VW×LC (labor income-to-consumption ratio) for the SV 

model; and DHH (change in the gross private investment for households), DCORP (change in 

gross private investment for non-financial corporate firms), and DNCORP (change in gross 

private investment for non-financial non-corporate firms) for the LVX model.
16

 Note that most 

of these models added at a quarterly frequency, together with the CRR and the JW models, 

                                                           
14

According to Lewellen, Nagel and Shanken (2010), the 25 Size and B/M portfolios have a strong factor structure 

favoring the FF model, and, thus, model specification tests can produce more-reliable inferences when the tests are 

done with additional portfolios that are not strongly correlated with the SMB and HML factors. 

  
15

We do not include the factors of Lustig and Van Nieuwerburgh (2003) because the time series data on the housing 

collateral ratio (MYMO) factor are available only up to the first quarter of 2005. 

 
16

 We are grateful to Jonathan Lewellen and Stefan Nagel for sharing their data with us. The CG, CAY, and LC 

factors can be directly downloaded or constructed using the data available from Sydney Ludvigson’s website, 

http://www.econ.nyu.edu/user/ludvigsons. The DCG and NDCG factors are constructed using data from the NIPA 

2.3.3 and NIPA 2.3.5 tables. We also use the Consumer-Durables Goods: Chain-Type Quantity Indexes for Net 

Stock table for constructing DCG. All of these tables are available at the Bureau of Economic Analysis 

webpage: http://www.bea.gov/iTable. For the DHH, DCORP, and DNCORP factors we use the Flow of Funds 

Accounts tables available at the Federal Reserve Board’s webpage: http://www.federalreserve.gov. Specifically, we 

use the table FA155019005 for the DHH factor, the tables FA105019005 and FA105020005 for the DCORP factor, 

and the tables FA115019005 and FA115020005 for the DNCORP factor. 

 

http://www.econ.nyu.edu/user/ludvigsons/
http://www.bea.gov/iTable
http://www.federalreserve.gov/apps/fof/FOFTables.aspx
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include non-traded factors. As is well known -- and as we observe in our empirical results -- non-

traded factors have a significantly lower signal-to noise-ratio than traded ones. 

 

4.1.1 Results from Monthly Stock Portfolio Returns 

In this subsection, we report the estimation results obtained using the six sets of monthly 

portfolio returns as response variables. The sample period is from January 1972 to December 

2011 (T = 480). The cross-sectional dimension N equals the number of portfolios used to 

estimate the beta matrix. The estimation results from the entire sample period are reported in 

panel (a) of Table 5. Panels (b) and (c) report results using the first and second half of the sample 

period, respectively. For each combination of portfolio sets and empirical factors, we report the 

adjusted R-square (
2R , explanatory power of empirical factors) and the estimated rank of the 

beta matrix using the RBIC estimator. The RBICD estimation results are reported in parentheses. 

Our simulation results, reported in Section 3.2, indicate that the RBIC estimator produces 

reliable inferences when using data with 240T  and / 2N T . The data used for Table 5 

satisfy all these conditions.  

The main observations from panel (a) of Table 5 are the following. First, for any of the 

six portfolio sets, the RBIC estimator predicts that the beta matrix corresponding to the FF3 

factors has the full column rank ( 3r  ). These results are consistent with the notion that the FF3 

factors are correlated with three linearly independent latent risk factors. We obtain a similar 

result from the estimation of the HXZ model. For five of the six portfolio sets, the HXZ model 

produces full column beta matrices ( 4r  ).  One exception is the 25 Operating Profitability and 

Investment portfolios, for which the beta matrix has the rank of three. Overall, the four HXZ 

factors appear to be correlated with four linearly independent latent risk factors. 

Second, two other models occasionally generate full column rank beta matrices. The 

Carhart model generates full column rank beta matrices for two of the six portfolio sets. So, 

depending on the portfolio returns analyzed, the MOM factor sometimes captures one latent 

factor that cannot be explained by the FF3 factors alone. The FF5 model produces a full column 

rank beta matrix only for the 32 Size, Operating Profitability and Investment portfolios. For other 

sets of portfolios, the beta matrices corresponding to the FF5 factors are all rank-deficient (the 

estimated ranks are usually four). This result indicates that the risk premiums corresponding to 

the FF5 factors would be underidentified. 
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Third, the beta matrices of the MOM plus REV, CRR and JW models are all rank- 

deficient, regardless of which portfolio returns are analyzed.
17

 The explanatory power of these 

models for returns is not as strong as that of the FF3, Carhart, HXZ or FF5 models.
18

 The 

explanatory power of the CRR factors for portfolio returns is particularly low, explaining no 

more than 2% of the average total variation in the portfolio returns analyzed. 

Fourth and finally, when all of the sixteen factors are used in the regression, the estimated 

beta rank is four or five, depending on the portfolio returns analyzed. In other words, the sixteen 

empirical factors are only correlated with up to five latent factors. One or two additional latent 

factors appear to exist in returns that are identified by the sixteen empirical factors, but not by the 

FF3 factors alone. These additional latent factors appear to be correlated with the MOM factor 

(in Carhart), the RMW and CMA factors (in FF5), or the I/A and ROE factors (in HXZ). Table 5 

shows that when these five empirical factors are added to the FF3 model (an eight-factor model), 

for any of the six sets of portfolio returns, the beta matrix has exactly the same rank as the beta 

matrix from all of the sixteen empirical factors.
19

  

In unreported experiments, we examine many other larger sets of portfolio returns 

obtained by merging two different portfolio sets. The estimation results from the larger data are 

similar to those reported in Table 5. For example, the rank estimation results from the 25 Size 

and Momentum plus 30 Industry Portfolios are similar to those from the 25 Size and B/M plus 

30 Industry Portfolios. The combination of the 25 Operating Profitability and Investment 

portfolios with another set of portfolios yields results similar to those from the 32 Size, 

Operating Profitability and Investment portfolios. In some cases, a five-factor model combining 

the FF3 and HZX factors generates a full column rank beta matrix, but only occasionally. 

The RBICD estimation results are reported (in parentheses) in panel (a) of Table 5. 

Nearly 80% of the rank estimation results using the RBICD estimates are consistent with those 

using the RBIC estimates. For instance, for the 32 Size, Operating Profitability and Investment 

Portfolios, the rank of the demeaned beta matrix has the same rank as the original beta matrix for 

any factor model. In contrast, for the 25 Size and Momentum Portfolios, the RBICD estimates 

                                                           
17

Similar to our analysis, Kleibergen and Paap (2006) also find that the beta matrix from JW models does not have 

full column rank. 
18

Among the FF3 factors, the market factor has the strongest explanatory power for portfolio returns. 
19

 We also investigate whether some of the eight factors can be omitted without reducing the rank of the beta matrix. 

We find that the estimated rank of the beta matrix remains unchanged only when we omit the I/A factor, and the 

rank always drops for some sets of portfolios as any other empirical factor is omitted from regression.  
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are quite often smaller than the RBIC estimates by one, suggesting that some betas are constant 

over different portfolios. However, the RBIC and RBICD estimation results are generally similar.    

In panels (b) and (c) of Table 5, we execute the same exercises as before, using two 

subsample periods: 1972-1991 and 1992-2011. In each of these subsamples, we have T=240. As 

shown in our simulations in Section 3.2, using smaller T often leads to underestimation of rank if 

the proposed factors have weak SNR. Panel (b) of Table 5 corresponds to the first half of the 

sample period and demonstrates that the estimated ranks of many factor models are smaller than 

those using the entire sample period. For example, the HXZ model generates a rank of three 

(instead of four) in every portfolio set. Putting all of the sixteen factors together, the estimated 

rank is reduced by one in five of the six portfolios, compared to those in panel (a) of Table 5.  

In contrast, panel (c) of Table 5, which corresponds to the second half of the sample 

period, shows results very similar to those using the entire sample period. Given that the reported 

average R
2
s in the second period are smaller than those in the first period, it seems surprising that 

the estimated ranks in panel (c) are generally larger than those reported in panel (b). Table 6 

explains this apparent puzzle. 

In Table 6, we report the average R
2
s of each individual factor using the two subsample 

periods: 1972-1991 and 1992-2011. All empirical factors have been orthogonalized with respect 

to the market portfolio (VW). This means that each factor’s average R
2
 represents the amount of 

variation it captures in each sample, beyond what VW has already captured. We observe several 

patterns from the average R
2
 during these two subsample periods. First, the market portfolio’s 

SNR clearly dominates those of the other factors, which additionally capture less than 10% of the 

total variation. Second, the non-traded factors (MP, UI, DEI, UTS, UPR and LAB) have average 

R
2
s of 1% or less. Hence, the RBIC and RBICD might find them redundant even if they are 

correlated with a latent source of risk.  

In Table 6, we further calculate the ratio of the average R
2
 in the second subsample 

divided by that of the first subsample (Ratio). We observe that the market portfolio’s (VW) 

explanatory power decreases between 30% and 15% from the first period to the second, 

depending on which portfolio set is used as the response variable. This result explains why the 

average R
2
 of every model that includes VW is usually smaller in the second period than those 

reported in panel (a) and panel (b) of Table 5. At the same time, most traded factors’ average R
2
 

are much higher in the second period than in the first. For example, when using the 25 Size and 

Book to Market Portfolios as response variables, the average R
2
 of RMW is 25 times larger in 

the second period than in the first one. This explains why the rank of the beta matrix estimated 
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for the FF5 model is generally larger in the second period than in the first one. The other traded 

factors (except REV_L) show similar patterns, though less pronounced. Hence, we should expect 

to see smaller ranks in the first period than in the second, since the weak factors are weaker in 

the first period. All of these results are in line with what we observe in the simulation section. 

 

4.1.2 Results from Quarterly Stock Portfolio Returns  

Using quarterly returns, we re-estimate the FF3, Carhart, FF5 and HXZ models, which most often 

produce full column rank beta matrices for monthly portfolio return data. We compute the 

quarterly returns for the same six sets of portfolios as in Table 5, using the data from the first 

quarter of 1972 to the fourth quarter of 2011 (T = 160). The estimation results are presented in 

Table 7.
20

   

The estimation results from the four models are very similar to those in panel (a) of Table 

5. We find again that the beta matrix of the FF3 factors has full column rank for all of the six 

portfolio sets. The RBICD estimation results suggest that the demeaned beta matrix of the FF 

factors also has a rank of three. In fact, the FF3 model is the only model that has the full column 

rank beta matrix for all six sets of portfolios. The HXZ model also produces a full column rank 

beta matrix for five sets of portfolios, but not for the 25 Operating Profitability and Investment 

Portfolios. For the Carhart model, which adds the MOM factor to the FF3 model, the beta matrix 

has a rank of three in most cases. The beta matrix has full column rank only for the 25 Size and 

Momentum portfolios. The FF5 factors produce a full rank beta matrix for two sets: the 25 

Operating Profitability and Investment portfolios, and with the 32 Size, the Operating 

Profitability and Investment portfolios. In contrast, the eight-factor model with the FF5, MOM, 

I/A and ROE factors now has the beta matrix rank equal to five for all six portfolio sets.  

Next, we consider the five macroeconomic factor models discussed in Lewellen, Nagel 

and Shanken (2010). The models are the unconditional CCAPM and the models of Lettau and 

Ludvigson (2001, LL); Yogo (2006, Yogo); Santos and Veronesi (2006, SV); and Li, Vassalou 

and Xing (2006, LVX). We observe all of the empirical factors used by these models only 

quarterly and refer to all of these factors as quarterly macroeconomic factors. These 

macroeconomic factors, like those in the CRR and JW models, are mostly non-traded factors. 

Hence, their signal-to-noise ratios are significantly lower than those of the traded factors. 

                                                           
20

 We do not include the analysis in the subsample periods since we have only 160 quarterly observations for each 

asset. 
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The results from the RBIC and RBICD estimations are reported in Table 7. The CCAPM 

factor has a rank of zero for four of the six portfolio sets. The beta matrices corresponding to LL 

and LVX factors have a rank of one for all six portfolio sets, while the demeaned beta matrices 

all have a rank of zero. The RBIC and RBICD rank estimates from Yogo’s three-factor model 

are all ones for all six portfolio sets. These results imply that none of the LL, LVX and Yogo 

models can identify risk premiums. The SV model is the only one that generates a full column 

rank beta matrix ( 2r  ) consistently for all six portfolio sets. However, the demeaned beta 

matrix has a rank of one for five portfolio sets.   

When we add all of the quarterly macroeconomic factors to the eight-factor models of the 

FF5, MOM, I/A and ROE factors, the rank of the beta matrix increases for the 30 Industrial 

Portfolios and the 25 Size and B/M plus 30 Industrial Portfolios. For other sets of portfolios, 

adding the quarterly macroeconomic factors does not increase the rank of the beta matrix. For 

industry-based portfolios, the quarterly macroeconomic factors appear to be correlated with one 

additional latent factor that the eight factors do not explain. We also run some unreported tests to 

identify which of the macroeconomic factors or which linear combinations among them can 

increase the rank of the beta matrix. None of the single macroeconomic factors add significant 

explanatory power for quarterly returns. We found that at least six macroeconomic factors are 

needed to increase the rank of the beta matrix by one.  

 

4.2 Results from Individual Stock Returns  

In this subsection, we use the monthly individual stock excess returns over the one-month 

Treasury bill as response variables. Individual stock returns include dividends. The data are 

downloaded from CRSP and exclude REITs (Real Estate Investment Trusts) and ADRs 

(American Depositary Receipts). We also exclude the observations in which the stocks show 

more than 300% excess returns in a given month, because such huge variations are unlikely due 

to changes in common factors. Excessively high or low returns are most likely to be driven by 

idiosyncratic shocks.  

Table 8 shows the results with individual stock returns. For each dataset, we sample 

10,000 random sets of 50 stocks (N=50) and 10,000 random sets of 200 stocks (N=200). This 

exercise gives us further information using real data regarding the performance of the RBIC 

(RBICD) estimator when the signal-to-noise ratio of the factors is low and the number of cross-

section variables N is smaller or bigger than T/2. The table reports the average result of the RBIC, 
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RBICD, and Adjusted R
2
 together with their standard deviation over the 10,000 random samples 

in parentheses. 

Panel (a) of Table 8 shows the case in which N<T/2. The rank of the beta matrices is, on 

average, less than three, even if we use the sixteen factor candidates together. The Fama-French 

three-factor model is the only one in which the average rank of beta matrices is close to the 

number of factors used. The RBIC and RBICD rank estimators are not able to capture the non-

traded factors (CRR and two of the three factors in JW). This is expected since the SNR is, on 

average, less than one third of that in the tables using portfolio returns as response variables, 

where non-traded factors were already not captured. In this setup, RBIC and RBICD seem to 

miss some traded factors, too. 

Panel (b) of Table 8 shows the effect of increasing N to the point at which N>T/2. For the 

entire sample period (1972-2011), we still have N<T/2, while for the two subsample periods, we 

have N>T/2. The results in the entire sample period remain similar to those in panel (a) of Table 

8. However, in both of the subsample periods, the ranks of the beta matrices estimated using 

RBIC and RBICD are close to the number of empirical factors used. As we illustrate in the 

simulation section, for samples similar in size to the two subsamples used in panel (b) of Table 8, 

the estimators tend to overestimate the rank of the beta matrices when N>T/2. Therefore, it seems 

prudent in finite samples to maintain the N<T/2 rule. 

 

4.3. Summary of Empirical Results 

The main results from our analysis of actual return data can be summarized as follows. First, the 

FF3 factors appear to be correlated with three linearly independent latent factors using both 

portfolio and individual stock returns and different sample periods. The HXZ four factors 

produce full rank beta matrices quite often when using portfolio returns as response variables, 

and, thus, they appear to be correlated with four different latent sources of risk. The FF5 factors 

also seem correlated with four latent factors in most of the cases in which portfolio returns are 

used as response variables, generating rank-deficient beta matrices too often. The Carhart model 

also generates rank-deficient beta matrices quite often, except when tested using portfolios sorted 

by momentum. The remaining factor models that we have considered fail to generate full column 

rank beta matrices across assets and time periods. 

 Second, among the twenty-six empirical factors, we can identify up to five or six latent 

factors in the U.S. stock returns when we use portfolios as response variables. When using 

individual stock returns, the same set of empirical factors seems to capture a smaller number of 
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factors. Based on our simulations, the difference is driven mainly by the facts that individual 

stock returns contain more idiosyncratic risk, and the factor structure has a smaller SNR ratio.  

Third, the rank of the beta matrix obtained using the longer period is greater than or equal 

to those obtained using shorter periods when keeping the same response variables and empirical 

factors. 

Fourth, except for the market portfolio (VW), most traded factors have larger SNR in the 

later subsample period, 1992-2011, than in the earlier subsample period, 1972-1991. Hence, the 

estimated ranks of the beta matrices generated by these factors in the second subsample are 

usually larger than or equal to those estimated in the first subsample.  

Fifth, and last, if the time series dimension is not large enough, we should use datasets 

with T<N/2. At the same time, to maximize SNR, we should apply the estimators proposed in 

this paper, using portfolio returns as response variables and traded factors as independent 

variables. 

 

5. Concluding Remarks 

In this paper, we estimate the ranks of the beta matrices of many empirical factors that have been 

used in the literature. We conduct Monte Carlo simulations to determine which of the existing 

rank estimators produces the most-reliable inferences, particularly when the number of assets to 

be analyzed is large. Our simulation results indicate that the Testing Criterion estimators are 

reliable only if the number of time series observation (T) is very large and the number of assets 

(N) is substantially small. In contrast, the restricted BIC estimator proposed by Cragg and 

Donald (1997) is quite accurate for data with 240T   and / 2N T .  

Our empirical analysis shows that the Fama and French (1993) three-factor model 

appears to be correlated with three linearly independent latent factors across portfolios and time 

periods. The Hou, Xue and Zhang (2015) four-factor model generates full rank beta matrices 

when using portfolio returns as response variables and samples including recent periods. Other 

factor models in our analysis often fail to produce beta matrices with full column rank. This 

finding suggests that the risk premiums corresponding to many proposed factor models are 

under-identified. In addition, the twenty-six empirical factors we have considered identify, at 

most, five or six different latent risk factors using stock portfolio returns. However, their 

explanatory power for individual stock returns is limited, with the estimated rank often less than 

three.  
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Bai and Ng (2002) and Onatski (2010) develop estimation methods that can estimate the 

number of latent factors without using empirical factors. Using these methods, they find 

evidence that two latent factors drive U.S. individual stock returns. Our exercise using individual 

stock returns yields similar results. In contrast, though, our results using portfolio returns suggest 

up to four additional latent factors. This difference can be explained by the lower signal-to-noise 

ratios of the empirical factors on individual stock returns, suggesting the use of portfolio returns 

as dependent variables when testing asset-pricing models.   
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Appendix 

In this appendix, we show that the RBIC estimator is consistent. A similar proof can be used to 

show the consistency of the RBICD estimator. We begin with the following assumptions.   

 

 Assumption A (empirical factors): 1

1( )( )T

t t t p ffT f f f f


     , and 

p ff  , where f  = 

1

1

T

t tT f

 , 
ff is a finite and positive definite matrix and f  is a finite vector. 

 

Assumption B (idiosyncratic errors): For given fixed N, 1( ) 0t NE    and   

 1

1 T

t t t
T

 
  , 

where   is a N×N finite and positive definite matrix. 

 

Assumption C (factors and idiosyncratic errors): For given fixed N,  

 1 ( 1) 1

11
(0 , )T

t t d N K

t

N
fT

  

 
    

 
, 

where   is a finite and positive definite matrix. 

 

Assumption D (betas): For fixed N K , rank( ) r   and ( )Nrank Q   = 
dr  ( r ), where 0 ≤ 

dr  ≤ r  ≤ K.  

 

 Assumptions A-C are the standard assumptions under which the OLS estimator of   is 

consistent and asymptotically normal. Chapters 3 and 4 of White (1984) provide detailed 

conditions under which the three assumptions hold. We note that the assumptions allow both 

factors and idiosyncratic errors to be heteroskedastic and/or autocorrelated over time. In addition, 

under the assumptions, it is straightforward to show that result (4) in Section 2 holds with   =  

1 1( ) ( )N ff N ffI I     and that ˆ
  is a consistent estimator of   for fixed N:  

  ˆ
p    . (A1) 

          

Lemma 1: Under Assumptions A-D, for some positive number pa ,  
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 ˆ ˆˆ( , , ) /T p p R p pA M T a   , for p r ; (A1)   

 1
ˆ ˆˆ ˆ( , , ) (1)K r

T r r R j j pA M T O     . (A2) 

 

Proof of Lemma 1:  When p r , for any pA  and pM  matrices of full column rank, 

rank( )p pA M p r   . Thus, for any pA  and pM , p pA M   . Consequently,  

  ˆˆ ˆ( )p p p pvec A M     , 

where p  is a non-zero constant vector. Thus, by Cragg and Donald (1997), 

  

1

1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( , , ) / ( ) ( ) ( )

( ) (1) (1),

T p p R p p ff p p

p ff p p p p

A M T vec A M vec A M

o a o



 





             

     
 

which shows (A1). Smith and Robin (2000) show that 
1

1
ˆ ˆ ˆ( )K r

j j ffT  


    is asymptotically a 

weighted sum of ( )( )N r K r   independent chi-squared random variables even if ˆ
ff  and ˆ

  

are replaced by any conformable finite positive definite matrices. Thus, (A2) holds.     

 

Theorem 1:   Let r̂  be the RBIC estimator. Then, under Assumptions A-D, ˆlim Pr( )T r r   = 

1. That is, r̂  is a consistent estimator of r . 

    

Proof of Theorem 1: Note that  

     ˆ ˆ ˆ( ) ( ) 1 1 ( ) ( )0m r m r r K r r K r         , (A3) 

if ˆ ( )r r  . If r̂ r , ˆ( ) ( ) 0R RC r C r  . Thus, ˆPr( )r r  ≤ ˆPr[ ( ) ( ) 0]R RC r C r  . Thus, we can 

complete the proof by showing that as T  , ˆPr[ ( ) ( ) 0] 0R RC r C r   . Suppose that r̂ r . 

Then,    

 
  ˆ

1 1

1

ˆ ˆˆ ˆPr ( ) ( ) 0 Pr ln( )( ( ) ( )) 0

ˆ ˆPr ln( )( ( ) ( )) 0 0

K r K r

R R j j j j

K r

j j

C r C r T T T m r m r

T T m r m r

 



 

 





          

       

 (A4) 

because 
1

ˆ (1)K r

j j pT O   by Lemma 1 and ˆln( )( ( ) ( ))T m r m r   by (A3). Therefore, 

ˆPr( ) 0r r   as T  . Similarly, if r̂ r ,  

 
ˆ

1 1

ln( )
ˆ ˆˆ ˆPr[ ( ) ( ) 0] Pr ( ( ) ( )) 0 0K r K r

R R j j j j

T
C r C r m r m r

T
  

 

 
         

 
 (A5) 
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because ln( ) / 0T T  , and ˆ

1 1
ˆ ˆ 0K r K r

j j j j p ra  

       by Lemma 1. Thus, by (A4) and (A5), 

as T  , ˆPr[ ( ) ( ) 0] 0R RC r C r    whenever r̂ r . This completes the proof.  

 

Remark: We note that the above proof is almost identical to the proof of Theorem 3 in Cragg 

and Donald (1997). The only difference is that we use (A2) for the proof.  For their proof, Cragg 

and Donald use the fact that ˆ ˆˆ( , , )T r rA M   is an asymptotically chi-squared random variable 

with the degrees of freedom equal to ( )m p = ( )( )N p K p  . We add this proof to clarify that 

the proof requires ˆ ˆˆ( , , )T r rA M   to be only an asymptotically bounded random variable, not to 

be a random variable of a particular distribution. 
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Table 1: RTC Estimation of Beta Matrix from Five Empirical Factors 

 
Reported are the percentages (%) of correct estimation by the RTC estimator from 1,000 simulated datasets. The 

percentages (%) of under- and overestimation by each estimator are reported in parentheses (•,•). Data are drawn by 

1

K

it j ij jt itx f    ; 2 2 1/2 2 1/2

1 1 2 2 1 2( ) / ( ) (1 )it i t i t i i ith h v           , where K = 5 and 15, 0.2  , and jtf  (j = 

1, ... , K), j th  , j i   ( 1,2j  ) and itv  are all randomly drawn from N(0,1). For the beta matrix  , we draw an N×r 

random matrix g  such that its first column equals the vector of ones and the entries in the other columns are drawn 

from N(0,1). We also draw a random K×K positive definite matrix; compute the first r orthonormalized eigenvectors 

of the matrix; and set a K×r matrix C using the eigenvectors. 
1/2

g C    , where  = 1( ,..., )rdiag   . The rank 

of the beta matrix equals one or four (r = 1, 4) for K equals to 5 and 15, respectively. RTC refers to the Testing 

Criterion estimator of Cragg and Donald (1997), which is computed under the assumption that the it  are i.i.d. over 

time (but cross-sectionally correlated).  

 
 

RTC 

 

(a) K = 5, r = 1, λ1 = λ (b) K = 15, r = 4, λi = λ for i = 1,...,4 

λ = .03 

R
2
=.029 

λ = .10 

R
2
=.091 

λ = .50 

R
2
=.333 

λ = .03 

R
2
=.107 

λ = .10 

R
2
=.286 

λ = .50 

R
2
=.667 

T=60 

N =25 
4.1% 

(0.0, 95.9) 

2.9% 

(0.0, 97.1) 

2.3% 

(0.0, 97.7) 

1.9% 

(0.0, 98.1) 

0.1% 

(0.0, 99.9) 

0.0% 

(0.0, 100) 

N =50 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

T=120 

N =25 
48.5% 

(0.0, 51.5) 

46.4% 

(0.0, 53.6) 

45.2% 

(0.0, 54.8) 

45.9% 

(3.9, 50.2) 

26.1% 

(0.0, 73.9) 

20.7% 

(0.0, 79.3) 

N =50 
0.1% 

(0.0, 99.9) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

N=100 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

T=240 

N =25 
79.2% 

(0.0, 20.8) 

77.5% 

(0.0, 22.5) 

76.6% 

(0.0, 23.4) 

74.3% 

(2.0, 23.7) 

68.1% 

(0.0, 31.9) 

66.1% 

(0.0, 33.9) 

N =50 
27.5% 

(0.0, 72.5) 

27.0% 

(0.0, 73.0) 

27.2% 

(0.0, 72.8) 

4.6% 

(0.0, 95.4) 

3.8% 

(0.0, 96.2) 

3.6% 

(0.0, 96.4) 

N =100 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

N=200 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

T=480 

N =25 
90.1% 

(0.0, 9.9) 

89.9% 

(0.0, 10.1) 

90.0% 

(0.0, 10.0) 

90.1% 

(0.1, 9.8) 

87.8% 

(0.0, 12.2) 

87.0% 

(0.0, 13.0) 

N =50 
70.8% 

(0.0, 29.2) 

70.5% 

(0.0, 29.5) 

70.2% 

(0.0, 29.8) 

51.6% 

(0.0, 48.4) 

49.3% 

(0.0, 80.7) 

48.1% 

(0.0, 51.9) 

N=100 
8.4% 

(0.0, 91.6) 

8.5% 

(0.0, 91.5) 

8.4% 

(0.0, 91.6) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

N=200 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

N=400 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 
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Table 2: RBIC Rank Estimation of Beta Matrix from Five Empirical Factors 

 
Reported are the percentages (%) of correct estimation by the RBIC estimator from 1,000 simulated datasets. The 

percentages (%) of under- and overestimation by each estimator are reported in parentheses (•,•). Data are drawn by

1

K

it j ij jt itx f    ; 
2 2 1/2 2 1/2

1 1 2 2 1 2( ) / ( ) (1 )it i t i t i i ith h v           , where K = 5, 0.2  , and jtf  (j = 1, ... , K), 

j th  , j i  ( 1,2j  ) and itv  are all randomly drawn from N(0,1). For the beta matrix  , we draw an N r  random 

matrix g  such that its first column equals the vector of ones and the entries in the other columns are drawn from 

N(0,1). We also draw a random K×K positive definite matrix; compute the first r orthonormalized eigenvectors of 

the matrix; and set a K×r matrix C using the eigenvectors.
1/2

g C    , where 1( ,..., )rdiag    . The rank of the 

beta matrix equals one or three (r = 1, 4). RBIC refers to the Bayesian Information Criterion (BIC) estimator of 

Cragg and Donald (1997), which is computed under the assumption that the it  are i.i.d. over time (but cross-

sectionally correlated).  

 

 

 

RBIC 

 

(a) K = 5, r = 1, λ1 = λ (b) K = 5, r = 4, λi = λ for i = 1,...,4. 

λ = .03 

R
2
=.029 

λ = .10 

R
2
=.091 

λ = .50 

R
2
=.333 

λ = .03 

R
2
=.107 

λ = .10 

R
2
=.286 

λ = .50 

R
2
=.667 

T =60 

N =25 
72.8% 

(22.3, 4.9) 

89.6% 

(0.10, 10.3) 

88.3% 

(0.0, 11.7) 

2.1% 

(97.9, 0.0) 

79.9% 

(19.8, 0.3) 

99.3% 

(0.0, 0.7) 

N =50 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

37.3% 

(0.4, 62.3) 

23.7% 

(0.0, 76.3) 

20.6% 

(0.0, 79.4) 

N =75 
78.6% 

(14.9, 6.5) 

86.9% 

(0.0, 13.1) 

85.5% 

(0.0, 14.5) 

1.7% 

(98.3, 0.0) 

87.7% 

(12.3, 0.0) 

99.7% 

(0.3, 0.0) 

N =100 
0.6% 

(99.4, 0.0) 

57.3% 

(42.7, 0.0) 

100% 

(0.0, 0.0) 

0.0% 

(100, 0.0) 

0.2% 

(99.8, 0.0) 

99.8% 

(0.2, 0.0) 

N=200 
0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

11.3% 

(88.7, 0.0) 

0.4% 

(99.6, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

N=400 
0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

1.4% 

(97.6, 1.0) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(74.7, 25.3) 

T =120 

N =25 
65.4% 

(34.6, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

2.4% 

(97.6, 0.0) 

3.4% 

(96.6, 0.0) 

100% 

(0.0, 0.0) 

N =50 
97.6% 

(2.1, 0.3) 

99.6% 

(0.0, 0.4) 

99.5% 

(0.0, 0.5) 

43.9% 

(56.1, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =75 
73.6% 

(0.0, 23.4) 

70.7% 

(0.0, 29.3) 

70.6% 

(0.0, 29.4) 

97.9% 

(1.7, 0.4) 

99.1% 

(0.0, 0.9) 

98.9% 

(0.0, 1.1) 

N =100 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

28.8% 

(0.0, 71.2) 

25.3% 

(0.0, 74.7) 

23.9% 

(0.0, 76.1) 

N=200 
6.4% 

(93.6, 0.0) 

99.8% 

(0.2, 0.0) 

100% 

(0.0, 0.0) 

0.0% 

(100, 0.0) 

90.5% 

(9.5, 0.0) 

100% 

(0.0, 0.0) 

N=400 
0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

97.6% 

(2.1, 0.3) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

33.5% 

(45.6, 20.9) 
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Table 2 continued...  

 
 

RBIC 

 

(a) K = 5, r = 1, λ1 = λ (b) K = 5, r = 4, λi = λ for i = 1,...,4 

λ = .03 

R
2
=.029 

λ = .10 

R
2
=.091 

λ = .50 

R
2
=.333 

λ = .03 

R
2
=.107 

λ = .10 

R
2
=.286 

λ = .50 

R
2
=.667 

T =240 

N =25 
97.7% 

(2.3, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

33.3% 

(66.7, 0.0) 

99.9% 

(0.1, 0.0) 

100% 

(0.0, 0.0) 

N =50 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

81.8% 

(18.2, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =75 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

98.5% 

(1.5, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =100 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N=200 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

36.7% 

(0.0, 63.3) 

34.9% 

(0.0, 65.1) 

34.5% 

(0.0, 65.5) 

N=400 
93.7% 

(6.3, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

21.3% 

(78.7, 0.0) 

100% 

(0.0, 0.0) 

96.4% 

(0.0, 3.6) 

T =480 

N =25 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

90.0% 

(10.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =50 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =75 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =100 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N=200 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N=400 
0.4% 

(0.0, 99.6) 

0.4% 

(0.0, 99.6) 

0.4% 

(0.0, 99.6) 

53.6% 

(0.0, 43.7) 

55.6% 

(0.0, 44.4) 

55.1% 

(0.0, 44.9) 
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Table 3: RBIC Estimation of Beta Matrix from Fifteen Empirical Factors 

 
Reported are the percentages (%) of correct estimation by the RBIC estimator from 1,000 simulated datasets. The 

percentages (%) of under- and overestimation by each estimator are reported in parentheses (•,•). Data are drawn by 

1

K

it j ij jt itx f    ; 
2 2 1/2 2 1/2

1 1 2 2 1 2( ) / ( ) (1 )it i t i t i i ith h v           , where K = 15, 0.2  , and jtf  (j = 1, ... , K), 

j th  , j i  ( 1,2j  ) and itv  are all randomly drawn from N(0,1). For the beta matrix  , we draw an N r  random 

matrix g  such that its first column equals the vector of ones and the entries in the other columns are drawn from 

N(0,1). We also draw a random K×K positive definite matrix; compute the first r orthonormalized eigenvectors of 

the matrix; and set a K r  matrix C  using the eigenvectors. 
1/2

g C    , where 1( ,..., )rdiag    . The rank of 

the beta matrix equals one or four (r = 1, 4). RBIC refers to the Bayesian Information Criterion (BIC) estimators of 

Cragg and Donald (1997), which is computed under the assumption that the it  are i.i.d. over time (but cross-

sectionally correlated).  

 

 

RBIC 

 

(a) K = 15, r = 1, λ1 = λ (b) K = 15, r = 4, λi = λ for i = 1,...,4 

λ = .03 

R
2
=.029 

λ = .10 

R
2
=.091 

λ = .50 

R
2
=.333 

λ = .03 

R
2
=.107 

λ = .10 

R
2
=.286 

λ = .50 

R
2
=.667 

T =60 

N =25 
18.7% 

(0.0, 80.9) 

9.3% 

(0.0, 90.7) 

6.9% 

(0.0, 93.1) 

24.9% 

(72.2, 2.9) 

59.6% 

(8.7, 31.7) 

40.5% 

(0.0, 59.5) 

N =50 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.6% 

(0.0, 99.4) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

N =75 
12.6% 

(87.4, 0.0) 

82.4% 

(17.5, 0.1) 

99.2% 

(0.0, 0.8) 

0.0% 

(100, 0.0) 

2.2% 

(97.8, 0.0) 

100% 

(0.0, 0.0) 

N =100 
0.0% 

(100, 0.0) 

2.0% 

(98.0, 0.0) 

99.1% 

(0.9, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

71.1% 

(28.9, 0.0) 

N=200 
0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

N=400 
0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

1.3% 

(96.6, 2.1) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(68.0, 32.0) 

T =120 

N =25 
45.1% 

(54.9, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

0.2% 

(99.8, 0.0) 

85.7% 

(14.3, 0.0) 

100% 

(0.0, 0.0) 

N =50 
83.6% 

(1.0, 15.4) 

80.7% 

(0.0, 19.3) 

79.2% 

(0.0, 20.8) 

51.4% 

(48.2, 0.0) 

94.0% 

(0.0, 6.0) 

92.3% 

(0.0, 7.7) 

N =75 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

3.5% 

(0.0, 96.5) 

1.7% 

(0.0, 98.3) 

1.1% 

(0.0, 98.9) 

N =100 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

N=200 
0.1% 

(99.9, 0.0) 

96.1% 

(3.9, 0.0) 

100% 

(0.0, 0.0) 

0.0% 

(100, 0.0) 

34.0% 

(66.0, 0.0) 

100% 

(0.0, 0.0) 

N=400 
0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

74.7% 

(25.1, 0.2) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

2.2% 

(91.2, 6.6) 
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Table 3 continued... 

 

 

 

 

 

 

  

 

RBIC 

 

(a) K = 15, r = 1,  λ1 = λ (b) K = 15, r = 4,  λi = λ for i = 1,...,4 

λ = .03 

R
2
=.029 

λ = .10 

R
2
=.091 

λ = .50 

R
2
=.333 

λ = .03 

R
2
=.107 

λ = .10 

R
2
=.286 

λ = .50 

R
2
=.667 

T =240 

N =25 
80.4% 

(19.6, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

4.9% 

(95.1, 0.0) 

99.2% 

(0.8, 0.0) 

100% 

(0.0, 0.0) 

N =50 
99.9% 

(0.1, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

62.7% 

(37.3, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =75 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

97.4% 

(2.6, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =100 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

99.9% 

(0.1, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N=200 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

N=400 
68.6% 

(31.4, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

98.5% 

(1.5, 0.0) 

100% 

(0.0, 0.0) 

99.6% 

(0.0, 0.4) 

T =480 

N =25 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

64.9% 

(35.1, 0.0) 

99.9% 

(0.1, 0.0) 

100% 

(0.0, 0.0) 

N =50 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

98.4% 

(1.6, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =75 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =100 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N=200 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N=400 
0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 
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Table 4: RBIC Rank Estimation of Demeaned Beta Matrix 

 
Reported are the percentages (%) of correct estimation by the RBICD estimators from 1,000 simulated datasets. The 

percentages (%) of under- and overestimation by each estimator are reported in parentheses (•,•). Data are drawn by 

1

K

it j ij jt itx f    ; 
2 2 1/2 2 1/2

1 1 2 2 1 2( ) / ( ) (1 )it i t i t i i ith h v           , where 0.2  , and jtf  (j = 1, ... , K), j th  , 

j i  ( 1,2j  ) and itv  are all randomly drawn from N(0,1). For the beta matrix  , we draw an N r  random 

matrix g  such that its first column equals the vector of ones and the entries in the other columns are drawn from 

N(0,1). We also draw a random K×K positive definite matrix; compute the first r orthonormalized eigenvectors of 

the matrix; and set a K×r matrix C using the eigenvectors. 
1/2

g C    , where 1( ,..., )rdiag    . The rank of 

the beta matrix equals four (r = 4). RBICD refers to the Bayesian Information Criterion (BIC) estimators of Cragg 

and Donald (1997) for the demeaned beta matrix, which is computed under the assumption that the it  are i.i.d. over 

time.  

 

 

 

RBICD 

(a) K = 5, r = 4, λi = λ for i = 1,...,4 (b) K = 15, r = 4, λi = λ for i = 1,...,4 

λ = .03 

R
2
=.107 

λ = .10 

R
2
=.286 

λ = .50 

R
2
=.667 

λ = .03 

R
2
=.107 

λ = .10 

R
2
=.286 

λ = .50 

R
2
=.667 

T =60 

N =25 
4.0% 

(96.0, 0.0) 

87.9% 

(11.2, 0.9) 

98.7% 

(0.0, 1.3) 

44.7% 

(47.3, 8.0) 

53.1% 

(3.7, 43.2) 

35.4% 

(0.0, 64.6) 

N =50 
8.0% 

(0.0, 92.0) 

3.7% 

(0.0, 96.3) 

3.2% 

(0.0, 96.8) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

N =75 
23.4% 

(76.5, 0.1) 

96.3% 

(1.8, 1.9) 

96.5% 

(0.0, 3.5) 

0.0% 

(100, 0.0) 

24.1% 

(75.9, 0.0) 

99.6% 

(0.0, 0.4) 

N =100 
0.0% 

(100, 0.0) 

4.7% 

(95.3, 0.0) 

100% 

(0.0, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

89.0% 

(11.0, 0.0) 

N=200 
0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

N=400 
0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(74.7, 25.3) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

0.0% 

(80.6, 19.4) 

T =120 

N =25 
8.3% 

(91.7, 0.0) 

96.6% 

(3.4, 0.0) 

100% 

(0.0, 0.0) 

0.2% 

(99.8, 0.0) 

89.9% 

(10.1, 0.0) 

100% 

(0.0, 0.0) 

N =50 
60.2% 

(39.8, 0.0) 

100% 

(0.0, 0.0) 

94.6% 

(0.0, 5.4) 

67.4% 

(30.8, 1.8) 

92.0% 

(0.0, 8.0) 

90.8% 

(0.0, 9.2) 

N =75 
96.2% 

(0.5, 3.3) 

95.7% 

(0.0, 4.3) 

94.6% 

(0.0, 5.4) 

1.5% 

(0.0, 98.5) 

0.8% 

(0.0, 99.2) 

0.5% 

(0.0, 99.5) 

N =100 
3.3% 

(0.0, 96.7) 

2.6% 

(0.0, 97.4) 

2.3% 

(0.0, 97.7) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

N=200 
0.0% 

(100, 0.0) 

97.2% 

(2.8, 0.0) 

100% 

(0.0, 0.0) 

0.0% 

(100, 0.0) 

62.7% 

(37.3, 0.0) 

100% 

(0.0, 0.0) 

N=400 
0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

33.5% 

(45.6, 20.9) 

0.0% 

(100, 0.0) 

0.0% 

(100, 0.0) 

13.1% 

(83.8, 3.1) 
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Table 4 continued... 
 

 

 

RBICD 

 

(a) K = 5, r = 4, λi = λ for i = 1,...,4 (b) K = 15, r = 4, λi = λ for i = 1,...,4 

λ = .03 

R
2
=.107 

λ = .10 

R
2
=.286 

λ = .50 

R
2
=.667 

λ = .03 

R
2
=.107 

λ = .10 

R
2
=.286 

λ = .50 

R
2
=.667 

T =240 

N =25 
46.1% 

(53.9, 0.0) 

99.9% 

(0.1, 0.0) 

100% 

(0.0, 0.0) 

11.7% 

(88.3, 0.0) 

99.5% 

(0.5, 0.0) 

100% 

(0.0, 0.0) 

N =50 
88.1% 

(11.9, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

73.9% 

(26.1, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =75 
98.9% 

(1.1, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

98.2% 

(1.8, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =100 
99.9% 

(0.1, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N=200 
8.5% 

(0.0, 91.5) 

7.6% 

(0.0, 92.4) 

7.2% 

(0.0, 92.8) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

N=400 
21.3% 

(78.7, 0.0) 

100% 

(0.0, 0.0) 

96.4% 

(0.0, 3.6) 

8.6% 

(91.4, 0.0) 

100% 

(0.0, 0.0) 

99.7% 

(0.0, 0.3) 

T =480 

N =25 
92.9% 

(7.1, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

73.3% 

(26.7, 0.0) 

99.9% 

(0.1, 0.0) 

100% 

(0.0, 0.0) 

N =50 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

98.9% 

(1.1, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =75 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N =100 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N=200 
100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

100% 

(0.0, 0.0) 

N=400 
23.7% 

(0.0, 76.3) 

23.4% 

(0.0, 73.6) 

23.4% 

(0.0, 73.6) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 

0.0% 

(0.0, 100) 
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Table 5: Results from Estimation with Six Different Sets of Monthly Portfolio Returns 

 
Reported are the RBIC estimates of the ranks of beta matrices from six different sets of U.S. stock portfolio returns. The RBICD estimates of the ranks of beta 

matrices are in parentheses. The individual rows of the table report RBIC and RBICD estimation results and the adjusted R-squares from portfolio-by-portfolio 

time series regressions obtained using different sets of empirical factors (with the numbers of empirical factors used in parentheses). FF3, Carhart, FF5, HXZ, 

MOM, REV, CRR , and JW, respectively, refer to the three Fama-French factors (FF3: VW, SMB, and HML); the Carhart four factors (Carhart: FF3 and 

MOM); the five Fama-French factors (FF5: FF3, RMW, and CMA); the Hou-Xue-Zhang four factors (HXZ: VW, SMB, I/A, and ROE); the momentum factor 

(MOM); the short-term and long-term reversal factors (REV); the five Chen-Roll-Ross macroeconomic factors (CRR: MP, UI, DEI, UTS, and UPR); and the 

three Jagannathan and Wang factors (JW: VW, UPR, and LAB). The sample period is from January 1972 to December 2011 (T = 480).     

 

(a) Whole sample period during January 1972 - December 2011 (T = 480)  

 
Empirical Factors (K) 25 Size and Book 

to Market 

30 Industrial 

Portfolios 

25 Size and B/M + 

30 Industrial  

25 Size and 

Momentum 

25 Op. Prof. and 

Investment 

32 Size, Op. Prof. 

and Inv. 

 2R  
RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RDBIC) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 

FF3 (3) 91.8% 3 (3) 60.7% 3 (3) 73.3% 3 (3) 82.4% 3 (2) 81.1% 3 (2) 87.6% 3 (3) 

Carhart (4) 91.9% 3 (3) 61.4% 3 (3) 73.8% 4 (3) 91.4% 4 (3) 81.3% 3 (3) 87.7% 3 (3) 

FF5 (5)  91.8% 4 (4) 61.9% 4 (3) 74.0% 4 (4) 82.5% 3 (2) 83.5% 4 (4) 89.6% 5 (5) 

HXZ (4) 89.0% 4 (4) 60.6% 4 (4) 72.1% 4 (4) 84.3% 4 (3) 82.2% 3 (2) 88.2% 4 (4) 

MOM and REV (3) 12.2% 1 (1) 7.9% 1 (1) 9.6% 2 (2) 22.2% 2 (2) 8.6% 1 (1) 11.1% 1 (1) 

CRR (5) 1.3% 0 (0) 1.1% 0 (0) 1.2% 0 (0) 2.0% 0 (0) 0.7% 0 (0) 1.3% 0 (0) 

JW (3) 73.4% 1 (1) 57.1% 1 (1) 63.7% 1 (1) 71.7% 1 (1) 78.1% 1 (1) 74.8% 1 (1) 

All together (16) 92.9% 4 (4) 64.0% 5 (4) 75.4% 5 (4) 91.9% 4 (3) 84.2% 4 (4) 90.3% 5 (5) 

FF5+ HXZ+MOM (8) 92.3% 4 (4) 64.1% 5 (5) 75.5% 5 (4) 92.0% 4 (3) 84.3% 4 (4) 90.4% 5 (5) 
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(b) Sample period during January 1972 - December 1991 (T = 240)   

 
Empirical Factors (K) 25 Size and Book 

to Market 

30 Industrial 

Portfolios 

25 Size and B/M + 

30 Industrial  

25 Size and 

Momentum 

25 Op. Prof. and 

Investment 
32 Size, Op. Prof. 

and Inv. 

 2R  
RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RDBIC) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 

FF3 (3) 94.1% 3 (3) 71.7% 3 (2) 81.1% 3 (3) 88.5% 2 (2) 85.8% 3 (2) 90.9% 3 (2) 

Carhart (4) 94.2% 3 (3) 72.0% 3 (2) 81.3% 3 (3) 93.8% 3 (3) 85.9% 3 (2) 91.0% 3 (2) 

FF5 (5)  93.9% 3 (3) 72.4% 4 (3) 81.4% 4 (4) 88.4% 2 (2) 87.6% 4 (3) 91.9% 4 (4) 

HXZ (4) 92.6% 3 (3) 71.8% 3 (2) 80.5% 3 (3) 89.8% 3 (3) 86.4% 3 (2) 91.2% 3 (3) 

MOM and REV (3) 15.0% 1 (1) 9.6% 1 (1) 11.9% 1 (1) 19.8% 1 (1) 10.8% 1 (1) 13.7% 1 (1) 

CRR (5) 8.3% 0 (0) 6.6% 0 (0) 7.3% 0 (0) 8.6% 0 (0) 6.7% 0 (0) 7.5% 0 (0) 

JW (3) 79.6% 1 (1) 68.8% 1 (1) 73.3% 1 (1) 77.6% 1 (1) 83.6% 1 (1) 80.4% 1 (1) 

All together (16) 94.2% 3 (3) 74.1% 3 (2) 82.5% 4 (4) 93.9% 3 (3) 87.9% 4 (3) 92.3% 4 (4) 

FF5+ HXZ+MOM (8) 94.0% 3 (3) 73.0% 4 (3) 81.8% 4 (4) 93.9% 3 (3) 87.8% 4 (3) 92.2% 4 (4) 
 

 

(c) Sample period during January 1992 - December 2011 (T = 240)   

 
Empirical Factors (K) 25 Size and Book 

to Market 

30 Industrial 

Portfolios 

25 Size and B/M + 

30 Industrial  

25 Size and 

Momentum 

25 Op. Prof. and 

Investment 
32 Size, Op. Prof. 

and Inv. 

 2R  
RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RDBIC) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 

FF3 (3) 90.0% 3 (3) 54.8% 3 (3) 68.6% 3 (3) 68.6% 3 (2) 77.7% 3 (3) 85.8% 3 (3) 

Carhart (4) 90.2% 3 (3) 56.2% 3 (3) 69.5% 4 (3) 69.5% 4 (3) 78.2% 4 (3) 86.0% 4 (3) 

FF5 (5)  90.1% 4 (3) 55.4% 4 (3) 69.0% 4 (4) 69.0% 3 (2) 80.3% 3 (3) 87.9% 4 (3) 

HXZ (4) 87.0% 4 (3) 53.5% 2 (2) 66.6% 3 (3) 66.6% 4 (3) 78.9% 3 (2) 86.1% 4 (3) 

MOM and REV (3) 15.2% 2 (2) 11.5% 1 (1) 12.9% 2 (2) 12.9% 2 (1) 12.6% 2 (2) 14.5% 2 (2) 

CRR (5) 0.5% 0 (0) 0.1% 0 (0) 0.3% 0 (0) 0.3% 0 (0) 0.3% 0 (0) 0.6% 0 (0) 

JW (3) 67.1% 1 (1) 48.6% 1 (1) 55.8% 1 (1) 55.8% 1 (1) 73.0% 1 (1) 69.5% 1 (1) 

All together (16) 91.2% 4 (4) 58.7% 4 (4) 71.4% 5 (4) 71.4% 4 (3) 81.7% 4 (3) 88.9% 5 (4) 

FF5+ HXZ+MOM (8) 90.9% 4 (4) 57.7% 4 (4) 70.7% 5 (4) 70.7% 4 (3) 81.4% 4 (3) 88.8% 5 (4) 
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Table 6: Signal to Noise Ratio of Factors over Different Subsample Periods 

 

Reported are the average R
2
 of each factor using different sets of portfolios over the subsample periods, 1972-1991 (First) and 1992-2011 (Second), and the 

Ratio (Second/First) of the average R
2
 in the Second Subsample divided by that in the First Subsample. The factors in this analysis include the three Fama-

French factors (FF3: VW, SMB, and HML); the Carhart four factors (Carhart: FF3 and MOM); the five Fama-French factors (FF5: FF3, RMW, and CMA); 

the Hou-Xue-Zhang four factors (HXZ: VW, SMB, I/A, and ROE); the momentum factor (MOM); the short-term and long-term reversal factors (REV_S and 

REV_L); the five Chen-Roll-Ross macroeconomic factors (CRR: MP, UI, DEI, UTS, and UPR); and the three Jagannathan and Wang factors (JW: VW, UPR, 

and LAB). All empirical factors have been orthogonalized with respect to the market portfolio (VW). 

 

 25 Size and Book to 

Market 
30 Industrial Portfolios 

25 Size and B/M + 30 

Industrial 
25 Size and Momentum 

25 Op. Prof. and 

Investment 
32 Size, Op. Prof. and 

Inv. 
Sample First Second Ratio First Second Ratio First Second Ratio First Second Ratio First Second Ratio First Second Ratio 
VW 0.80 0.68 0.85 0.69 0.49 0.71 0.74 0.58 0.78 0.79 0.68 0.86 0.83 0.72 0.87 0.81 0.70 0.86 
SMB 0.10 0.12 1.28 0.03 0.01 0.52 0.06 0.06 1.09 0.10 0.09 0.99 0.01 0.01 1.40 0.08 0.10 1.29 
HML 0.04 0.08 2.19 0.01 0.06 5.80 0.02 0.07 3.09 0.01 0.03 3.63 0.01 0.03 3.10 0.01 0.03 3.40 
RMW 0.00 0.05 25.00 0.01 0.04 7.00 0.00 0.05 11.50 0.00 0.03 9.00 0.01 0.03 2.70 0.01 0.03 4.71 
CMA 0.00 0.02 10.50 0.00 0.02 5.33 0.00 0.02 6.33 0.00 0.01 NA 0.01 0.03 2.64 0.01 0.02 2.75 
I/A 0.01 0.05 3.62 0.01 0.04 7.40 0.01 0.04 4.67 0.00 0.02 8.50 0.01 0.04 2.71 0.01 0.03 3.00 
ROE 0.04 0.03 0.70 0.01 0.02 1.42 0.02 0.02 0.91 0.04 0.04 0.95 0.01 0.01 1.18 0.02 0.02 0.91 
MOM 0.01 0.01 0.70 0.01 0.02 2.57 0.01 0.01 1.63 0.06 0.09 1.51 0.00 0.01 2.33 0.01 0.01 0.83 
REV_L 0.01 0.00 0.10 0.01 0.00 0.40 0.01 0.00 0.29 0.03 0.01 0.20 0.00 0.00 0.33 0.01 0.00 0.25 
REV_S 0.04 0.04 1.11 0.01 0.01 0.46 0.02 0.02 0.91 0.03 0.03 0.93 0.01 0.02 1.36 0.02 0.04 1.73 
MP 0.00 0.00 NA 0.00 0.00 0.67 0.00 0.00 1.00 0.00 0.00 NA 0.00 0.00 2.00 0.00 0.00 NA 
UI 0.00 0.00 1.00 0.00 0.00 2.00 0.00 0.00 1.50 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00 1.00 
DEI 0.00 0.00 2.00 0.00 0.00 1.50 0.00 0.00 1.50 0.00 0.00 1.00 0.00 0.00 2.00 0.00 0.00 2.00 
UTS 0.00 0.00 2.00 0.00 0.00 1.50 0.00 0.00 3.00 0.00 0.00 4.00 0.00 0.00 1.00 0.00 0.00 2.00 
UPR 0.00 0.00 1.00 0.00 0.00 0.67 0.00 0.00 0.67 0.00 0.01 4.00 0.00 0.00 1.00 0.00 0.00 0.50 
LAB 0.00 0.00 1.00 0.01 0.00 0.50 0.00 0.00 0.67 0.00 0.00 2.00 0.00 0.00 1.00 0.00 0.00 1.00 
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Table 7: Results from Estimation with Six Different Sets of Quarterly Portfolio Returns 

 
Reported are the RBIC estimates of the ranks of beta matrices from six different sets of U.S. stock portfolio returns. The RBICD estimates of the ranks of beta 

matrices are in parentheses. The individual rows of the table report the rank estimation results and the average adjusted R-squares from portfolio-by-portfolio 

time series regressions obtained using different sets of empirical factors (with the numbers of empirical factors used in parentheses). FF3, Carhart, FF5, HXZ, 

respectively, refer to the three Fama-French factors (FF3: VW, SMB, and HML); the Carhart four factors (Carhart: FF3 and MOM); the five Fama-French 

factors (FF5: FF3, RMW, and CMA); and the Hou-Xue-Zhang four factors (HXZ: VW, SMB, I/A, and ROE). The additional models we consider and their 

empirical factors are the CCAPM with CG; the Lettau-Ludvigson (LL) model with CAY, CG, and CAY×CG; the Yogo (Yogo) model with VW, DCG, and 

NDCG; the Santos-Veronesi (SV) model with VW and VW×LC; and the Li-Vassalou-Xing (LVX) model with DHH, DCORP, and DHCORP. The sample 

period is from the first quarter of 1972 to the fourth quarter of 2011 (T = 160). 

 
Empirical Factors (K) 25 Size and Book 

to Market 

30 Industrial 

Portfolios 

25 Size and B/M + 

30 Industrial  

25 Size and 

Momentum 

25 Op. Prof. and 

Investment 

32 Size, Op. Prof. 

and Inv. 

 2R  
RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 
2R  

RBIC 

(RBICD) 

FF3 (3) 93.0% 3 (3) 63.7% 3 (3) 76.2% 3 (3) 85.5% 3 (3) 83.1% 3 (3) 89.2% 3 (3) 

Carhart (4) 93.0% 3 (3) 64.0% 3 (3) 76.4% 3 (3) 92.3% 4 (4) 83.0% 3 (3) 89.3% 3 (3) 

FF5 (5)  93.1% 4 (4) 65.2% 4 (4) 77.2% 4 (4) 85.3% 3 (3) 85.5% 5 (4) 91.4% 5 (4) 

HXZ (4) 90.4% 4 (4) 64.6% 4 (4) 75.6% 4 (4) 87.5% 4 (3) 84.2% 3 (3) 90.0% 4 (4) 

FF5+ HXZ+MOM (8) 93.6% 5 (4) 66.5% 5 (4) 78.1% 5 (5) 93.2% 5 (4) 85.8% 5 (4) 91.8% 5 (4) 

CCAPM (1) 1.3% 0 (0) 0.9% 0 (0) 1.1% 0 (0) 1.2% 0 (0) 1.8% 1 (0) 1.7% 1 (0) 

LL (3) 0.8% 1 (0) 1.2% 1 (0) 1.1% 1 (0) 0.9% 1 (0) 1.6% 1 (0) 1.4% 1 (0) 

Yogo  (3) 75.8% 1 (1) 59.8% 1 (1) 66.6% 1 (1) 74.0% 1 (1) 80.3% 1 (1) 77.6% 1 (1) 

SV (2) 76.3% 2 (1) 60.9% 2 (2) 67.5% 2 (1) 74.7% 2 (1) 80.9% 2 (1) 78.0% 2 (1) 

LVX (3) 7.0% 1 (0) 3.2% 1 (0) 4.8% 1 (0) 7.0% 1 (0) 2.9% 1 (0) 5.9% 1 (0) 

All together (18) 93.8% 5 (4) 69.1% 6 (4) 79.6% 6 (6) 93.5% 5 (4) 86.2% 5 (3) 92.1% 5 (4) 
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Table 8: Results from Estimation with Different Sets of Monthly Individual Stock Returns 

 
Reported are the average RBIC and RBICD estimates over 10,000 random samples of the ranks of beta matrices from individual U.S. stock returns. The 

standard deviations from the estimates are in parentheses. The individual rows of the table report RBIC and RBICD estimation results and the adjusted R-

squares from asset-by-asset time series regressions. We report in parenthesis the standard deviation of the estimators over 10,000 different samples. The results 

are obtained using different sets of empirical factors (with the numbers of empirical factors used in parentheses). FF3, Carhart, FF5, HXZ, MOM, REV, CRR , 

and JW, respectively, refer to the three Fama-French factors (FF3: VW, SMB, and HML); the Carhart four factors (Carhart: FF3 and MOM); the five Fama-

French factors (FF5: FF3, RMW, and CMA); the Hou-Xue-Zhang four factors (HXZ: VW, SMB, I/A, and ROE); the momentum factor (MOM); the short-

term and long-term reversal factors (REV); the five Chen-Roll-Ross macroeconomic factors (CRR: MP, UI, DEI, UTS, and UPR); and the three Jagannathan 

and Wang factors (JW: VW, UPR, and LAB). 

 

(a) Results from 10,000 random samples of 50 stocks 

 
Empirical Factors (K) 1972-2011 (T=480, N=50) 1972-1991 (T=240, N=50) 1992-2011 (T=240, N=50) 

 RBIC RBICD 2R  RBIC RBICD 2R  RBIC RBICD 2R  

FF3 (3) 2.78 

(0.41) 

2.21 

(0.45) 

0.28 

(0.014) 

2.13 

(0.34) 

1.90 

(0.30) 

0.31 

(0.018) 

2.42 

(0.51) 

2.25 

(0.55) 

0.19 

(0.019) 

Carhart (4) 2.79 

(0.40) 

2.50 

(0.52) 

0.29 

(0.015) 

2.16 

(0.37) 

1.89 

(0.31) 

0.32 

(0.018) 

2.44 

(0.51) 

2.32 

(0.53) 

0.20 

(0.020) 

FF5 (5)  2.93 

(0.31) 

2.24 

(0.46) 

0.29 

(0.014) 

2.55 

(0.50) 

1.93 

(0.28) 

0.32 

(0.018) 

2.45 

(0.51) 

2.23 

(0.57) 

0.20 

(0.020) 

HXZ (4) 2.02 

(0.13) 

1.84 

(0.37) 

0.27 

(0.014) 

2.00 

(0.07) 

1.67 

(0.47) 

0.31 

(0.018) 

1.98 

(0.26) 

1.65 

(0.48) 

0.19 

(0.018) 

MOM and REV (3) 0.33 

(0.47) 

0.32 

(0.46) 

0.06 

(0.006) 

0.01 

(0.11) 

0.01 

(0.11) 

0.06 

(0.006) 

0.48 

(0.50) 

0.34 

(0.47) 

0.06 

(0.009) 

CRR (5) 0.00 

(0.00) 

0.00 

(0.00) 

0.01 

(0.002) 

0.00 

(0.00) 

0.00 

(0.00) 

0.03 

(0.005) 

0.00 

(0.00) 

0.00 

(0.00) 

0.01 

(0.003) 

JW (3) 1.00 

(0.00) 

1.00 

(0.00) 

0.24 

(0.013) 

1.00 

(0.00) 

0.95 

(0.22) 

0.26 

(0.018) 

1.00 

(0.00) 

0.99 

(0.06) 

0.14 

(0.016) 

All together (16) 2.96 

(0.37) 

2.43 

(0.54) 

0.31 

(0.016) 

2.65 

(0.48) 

1.91 

(0.31) 

0.33 

(0.019) 

2.46 

(0.52) 

2.29 

(0.53) 

0.22 

(0.022) 
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(b) Results from 10,000 random samples of 200 stocks 

 
Empirical Factors (K) 1972-2011 (T=480, N=200) 1972-1991 (T=240, N=200) 1992-2011 (T=240, N=200) 

 RBIC RBICD 2R  RBIC RBICD 2R  RBIC RBICD 2R  

FF3 (3) 2.94 

(0.23) 

2.38 

(0.48) 

0.28 

(0.004) 

3.00 

(0.00) 

3.00 

(0.01) 

0.31 

(0.008) 

3.00 

(0.00) 

3.00 

(0.01) 

0.19 

(0.009) 

Carhart (4) 2.99 

(0.08) 

2.99 

(0.11) 

0.29 

(0.004) 

3.98 

(0.13) 

3.96 

(0.20) 

0.32 

(0.008) 

4.00 

(0.02) 

3.99 

(0.05) 

0.20 

(0.009) 

FF5 (5)  2.98 

(0.14) 

2.45 

(0.50) 

0.29 

(0.004) 

4.90 

(0.30) 

4.86 

(0.34) 

0.32 

(0.008) 

4.93 

(0.25) 

4.89 

(0.31) 

0.20 

(0.009) 

HXZ (4) 2.00 

(0.01) 

2.00 

(0.01) 

0.27 

(0.004) 

3.92 

(0.26) 

3.89 

(0.30) 

0.31 

(0.008) 

3.99 

(0.04) 

3.99 

(0.07) 

0.19 

(0.009) 

MOM and REV (3) 0.20 

(0.39) 

0.18 

(0.38) 

0.06 

(0.003) 

2.65 

(0.49) 

2.58 

(0.51) 

0.06 

(0.003) 

2.98 

(0.12) 

2.97 

(0.16) 

0.06 

(0.004) 

CRR (5) 0.00 

(0.00) 

0.00 

(0.00) 

0.01 

(0.000) 

3.17 

(0.58) 

2.99 

(0.58) 

0.03 

(0.002) 

3.32 

(0.61) 

3.17 

(0.61) 

0.01 

(0.001) 

JW (3) 1.00 

(0.00) 

1.00 

(0.00) 

0.24 

(0.004) 

2.07 

(0.55) 

1.96 

(0.55) 

0.26 

(0.008) 

2.35 

(0.54) 

2.42 

(0.54) 

0.14 

(0.007) 

All together (16) 3.58 

(0.49) 

3.53 

(0.50) 

0.31 

(0.005) 

11.40 

(0.70) 

11.10 

(0.71) 

0.33 

(0.008) 

12.06 

(0.69) 

11.80 

(0.70) 

0.22 

(0.010) 

 


